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Aberrant signaling Pathways

Proliferating cells, i.e. both cancer cells and normal cells exhibit 
metabolic reprogramming, but, in normal cells, growth factor (GF) 
signaling-induced alterations to metabolism are responsive to 
environmental signals and rapidly down-regulated if circumstances 
are unfavorable for growth [8]. In contrast, in tumor cells, internal 
and external cues turn out to be decoupled, owing to up-regulation 
of oncogenic signaling pathways and/or down regulation of tumor 
suppressor signaling pathways [9] (Figure 1).

It shows various aspects of energy metabolism regulation, 
including glycolysis, TCA cycle, pentose phosphate, glutaminolysis, 
fatty acid biosynthesis pathway, PI3K and RAS-MAPK signaling 
cascade. Three transcription factors, HIF-1, c-Myc and p53, are 
key regulators and coordinate regulation of cancer metabolism in 
different ways. 2HG, 2-hydroxyglutarate; 3PG, 3-phospho-glycerate; 
6P gluconate, 6-phospho-gluconate; a-KG, a-ketoglutarate; ACLY, 
acetyl-CoA by ATP-citrate lyase; AKT, v-akt murine thymoma 
viral oncogene homologue; AMPK, AMP-activated protein kinase; 
CD44, is a glycoprotein; EGFR, epidermal growth factor receptor; 
F1,6P, fructose-1,6-bisphosphate; F6P, fructose-6-phosphate; G6P, 
glucose-6-phosphate; G6PD, glucose-6-phosphate dehydrogenase; 
Gln, glutamine; GLS, glutaminase; Glu, glutamic acid; GLUT, 
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Abstract
Transformed cells undergo a metabolic transformation to satisfy the demands of growth and proliferation. In this regard, cancer cells prefer to 
perform glycolysis in the cytosol even in the presence of oxygen, a phenomenon first observed by Otto Warburg and now famously known as 
“Warburg effect” or “aerobic glycolysis”. Such reprogramming of glucose metabolism has been validated within many tumors, and increased 
glycolysis facilitates biosynthesis of biomass (e.g., nucleotides, amino acids and lipids) by providing glycolytic intermediates as raw material. Besides 
the dysregulation of glucose metabolism, metabolic reprogramming in cancer cells has been characterized by aberrant lipid metabolism, amino 
acids metabolism, mitochondrial biogenesis, and other bioenergetics metabolic pathways. However, the two noticeable characteristics of tumor cell 
metabolism are the Warburg effect and glutaminolysis, which, respectively, demonstrate the dependence of tumor cells on glucose and glutamine. 
This review aimed at appraising recent findings related to the drivers of glucose and glutamine metabolism reprogramming, their crosstalk in cancer 
cells, and their potential in cancer therapy.
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Background
Compared to normal cells, tumor cells show an essentially contrarily 

accustomed metabolism so as to find ways to proliferate, even though 
both types of cells use the same nutrients [1,2]. Otto Warburg 
showed that cancer cells are addicted to glycolysis; they ferment 
glucose into lactate rather than committing into mitochondrial 
oxidative phosphorylation (OXPHO), regardless of oxygen tension 
[3]. He postulated that defect in tumor cells mitochondria resulted 
in reduced OXPHO [4]. But, this is not the case, according to current 
understanding. They do, however, adapt their function to the needs 
of cell proliferation. Mitochondria, in addition to acting as a hub 
for ATP production, it serves a significant role by synthesizing 
precursors required for proteins, lipids, and nucleic acids synthesis 
via Krebs’s cycle [5-7]. To this end, in the following sections recent 
findings related to the drivers of glucose and glutamine metabolism 
reprogramming, their crosstalk in cancer cells, and their potential as 
cancer therapeutic strategy will be reviewed.

Underlining Mechanisms
According to, existing literatures pointed out that alterations in 

numerous signaling pathways and altered expression and mutation 
of metabolic enzymes are central in mediating the unusual metabolic 
behavior of cancer cells [8-10].
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oncogenes, including vascular endothelial growth factor (VEGF), 
which promotes angiogenesis; epidermal growth factor (EGF); insulin 
like growth factor-2 (IGF-2); transforming growth factor beta (TGF-β) 
[26], which stimulates growth and cell survival, and most importantly 
reprogram energy metabolism as shown in table 1 [9].

Myc: There is difference between normal cells and cancer cells in 
the level of expression of Myc [10]. According to studies, expression of 
Myc is induced by GF stimulation in normal cells, whereas in cancer 
cells there is over expression of Myc without regarding to GF signaling 
and this over expression is estimated to occur in 70% of human 
tumors [27,28]. Subsequently, over activity of Myc stimulates energy 
generation and precursor synthesis required for fast proliferation 
tumor cells [10]. Similar to HIF, Myc reprogram energy metabolism 
by altering target gene expression (Table 1).

p53: It plays an essential part in regulating the activities of 
glycolysis and OXPHOS (Table 1), in addition to its role in DNA 
damage response and apoptosis [29]. In general, p53 decreases the 
glycolytic rate, however, mutation or suppression of p53 frequently 
occurs in cancer, which results in losing control of its functions, thus 
promoting glycolysis. Surprisingly, mutant p53 inhibit mitochondrial 
respiration by down-regulating expression of cytochrome c oxidase 2 
(sCO2) and Glutaminase 2 (GLS2) [30]. Moreover, it activates AKT 
and HIF, which are effectors downstream of PI3K [31].

glucose transporter; HER2, human epidermal growth factor receptor 
type 2; HIF, hypoxia-inducible factor; HK, hexokinase; IDH, 
isocitrate dehydrogenase; IKK, nuclear factor-j light-chain-enhancer 
of activated B cells kinase; LDH, lactate dehydrogenase; LKB1, 
liver kinase B1; MET, hepatocyte growth factor receptor; mTOR, 
mammalian target of rapamycin; NF-jB, nuclear factor-j light-chain-
enhancer of activated B cells kinase; OH, hydroxy; P, phosphate; 
PDH, pyruvate dehydrogenase; PEP, phosphoenolpyruvate; 
PFK, phosphofructokinase; PHD2, prolyl hydroxylase 2; PI3K, 
phosphatidylinositol 3-kinase; PKM2, pyruvate kinase isozyme type 
2; PTEN, phosphate and tensin homolog deleted on chromosome 
10; RAF, regulation of alpha-fetoprotein; RAS, rat sarcoma virus 
peptide; ROS, reactive oxygen species; RTK, receptor tyrosine kinases; 
Ru5P, ribulose-5-phosphate; sCO2, synthesis of cytochrome c oxidase 
2; TCA, tricarboxylic acid; TIGAR, Tp53-induced glycolysis and 
apoptosis regulator; VHL, von Hippel-Lindau tumor suppressor, 
adapted from Song [9].

The Phosphoinositide-3-Kinase (PI3K): Pathway: PI3K is one of 
the most commonly rearranged signaling pathways in human cancer 
cells [11]. It could be because of mutation in phosphate and tensin 
homolog (PTEN), a tumor suppressor gene that inhibits the PI3K 
pathway [12]. Besides, mutations in the components of the pathway 
itself have also been associated with PI3K activation [13]. Abnormal 
signaling through receptor tyrosine kinases (RTK) upstream to the 
PI3K pathway have been also associated with aberrant activation of the 
PI3K pathway [12]. In this regards, activation of the pathway directly 
affects cellular metabolism like stimulation of glycolysis possibly via 
up regulating glucose transporters proteins expression and membrane 
translocation, as well as by activating crucial glycolytic enzymes 
via phosphorylation as shown in figure 1 [9,14]. Besides, indirectly 
through activation of mammalian target of rapamycin (mTOR) 
[15], that is known to regulate transcription factors such as hypoxia-
inducible factor-1 (HIF1) leads to HIF1-dependent metabolic changes 
as shown in figure 1 and table 1 [9,16,17].

Liver Kinase B1 (LKB1)/Adenosine Monophosphate-Activated 
Protein Kinase (AMPK) Pathways: Activation of the pathway 
known to regulate energy metabolism and growth, stimulating 
gene expression for extensive changes in metabolic programming, 
suppressing protein synthesis, and stimulating fatty acid oxidation to 
replenish ATP [18,19]. For instance, AMPK directly phosphorylates 
peroxisome proliferator activated receptor gamma (PPAR-γ) 
coactivator-1-α (PGC-1α), a transcriptional coactivator that controls 
several metabolic genes and mitochondria formation (Figure 1) [20]. 
However, loss of activity of AMPK has been associated with promotion 
of carcinogenesis via increasing the glycolytic pathway in tumor cells. 
This promotes a metabolic shift toward the Warburg effect [21]. 
Moreover, loss of LKB1 expression in tumor cells reduces the AMPK 
signaling, making cells more sensitive to low nutrient level, and 
leading to unregulated metabolism and cell growth in energetically 
stressful conditions [22-25]. This might promote tumorigenesis, as it 
leads to elevated glucose and glutamine flow, rising ATP levels, and a 
metabolic switch to aerobic glycolysis.

Hypoxia-Inducible Factor-1: HIF1 has been recognized as a key 
mediator of metabolic response to hypoxia [9]. It is a heterodimer 
composed of constitutive, stable β subunits and unstable α subunits, 
which are synthesized yet, degraded under presence of adequate 
oxygen due to the sequential action of oxygen-dependent prolyl 
hydroxylases (PHDs) and the VHL ubiquitin ligase (Figure 1). It 
functions as a transcriptional activator and enhances expression many 

Pathways Target genes Transcription factors

Transporter

Glucose transporter 1 HIF, c-Myc & p53

Glucose transporter 2 c-Myc

Glucose transporter 3 HIF & p53

Glucose transporter 4 c-Myc & p53

Glycolysis

Hexokinase 2 HIF, c-Myc & p53

Phosphofructokinase 1 HIF & c-Myc

Aldolase A HIF & c-Myc

GAPDH HIF & c-Myc

Phosphoglycerate kinase 1 HIF & c-Myc

Phosphoglycerate mutase p53

Enolase 1 HIF & c-Myc

Pyruvate kinase M2 HIF & Myc

Lactate dehydrogenase A HIF & c-Myc

Pentose 
phosphate

Transketolase HIF

Transketolase-like protein 2 HIF

TCA cycle
Pyruvate dehydrogenase 
kinase 1 HIF & c-Myc

Glutaminase 2 p53

Others 

Carbomyl phosphate 
synthetase aspartate 
transcarbomylase & 
dihydroorotase

c-Myc

Serine hydroxymethyl 
transferase c-Myc

Fatty acid synthase c-Myc

Ornithine decarboxylase c-Myc

Table 1: Target genes of HIF, c-Myc and p53 associated with energy 
metabolism [9].
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Bcl-2 Proteins: Accumulated body of evidence has shown the 
involvement of the apoptotic mediator, B cell lymphoma/leukemia-2 
(Bcl-2) proteins in reprogramming cancer cells metabolism [32-
34]. A study done by Danial et al. [32] reported integration between 
glycolysis and apoptosis pathway due observation of mitochondria 
associated glucokinase (in the liver) with the pro-apoptotic protein 
Bcl-2/Bcl-xL-associated agonist of cell death (BAD). The study 
revealed that, glucokinase activation via direct interaction with BAD 
especially in response to phosphorylation of BAD by Akt, downstream 
of PI3K pathway. However, glucokinase inhibits BAD’s pro-apoptotic 
activity when it bounds with BAD in its phosphorylated form. But, 
dephosphorylated BAD will dissociate from it, and able to interact 
with the anti-apoptotic protein Bcl-2/Bcl2-like 1, L isoform (Bcl-xL) 
and stimulate programed cell death. In this regard, binding of BAD 
to mitochondria associated glucokinase stimulate glucokinase and 
glycolysis activity that could be considered as one driver of metabolic 
reprograming in cancer cells, in addition to preventing its pro-
apoptotic functions [33-35].

Furthermore, a pro-apoptotic BH3-containing protein known 
as damage protein (NOXA) also play a part in metabolic control. 
According to a study done by Lowman et al. [36] , when there is 
elevation in of glucose level, NOXA will be phosphorylated by 
cyclin dependent kinase 5 (CDK5) that leads to localization of this 
pro-apoptotic protein within the cytoplasm and making it unable to 
accomplishing its pro-apoptotic functions. As the study found out the 
protein rather form complex with the anti-apoptotic Bcl-2 protein 
myeloid cell leukemia-1 (Mcl-1) and stimulates improved glucose 
metabolism and enhances metabolism via the PPP, favoring synthesis 
ribose sugar and NADPH. Furthermore, subsequent studies showed 
that over expression of NOXA in tumor cells, and over activity of 
CDK5 to promote tumor growth and survival, specifically in thyroid 
and neuroendocrine tumors [37,38].

Metabolic Enzymes
In addition to activation of oncogenes and loss of tumor suppressor 

pathways, mutations in key metabolic enzymes as well as preferential 
expression of specific isoforms of metabolic enzymes can provide 
cancer cells a mechanism to select for metabolic alterations during 
tumorigenesis [1,2,39].

Pyruvate Kinase M2: Recent studies reported that, PK plays 
a crucial role in reprogramming of glycolytic metabolism. Four 
mammalian PK isoenzymes (M1, M2, liver isoform (L) and RBC 
isoform (R)) have been identified and distributed in diverse cell types 
[40]. The muscle isoform (PKM1) is a constitutively active tetrameric 
form that is found in normal adult cells, whereas PKM2 forms less 
active dimers as well as tetramers and found in differentiated tissues 
and normal proliferating cells [10].

To form the active tetramer, PKM2 requires fructose-1, 6- 
bisphosphate (F-1, 6 BP). Its tetramer form has high affinity to PEP 
and leads to improved production of pyruvate [41]. Meanwhile, 
studies done using cancer cells pointed out that, PKM2 conversion 
from the tetramer to less active dimer by phosphorylation mediated 
tyrosine kinases by at tyrosine 105 sites in the enzyme that leads to 
a conformational change and dissociation of F-1, 6 BP. The PKM2 
conformational change caused by phosphorylation leads to FBP release 
and conversion of the enzyme from the tetramer to the less active 
dimer form [42,43]. Hence, in tumor cells, PKM2 is predominantly 
available in its less active dimeric form, this leads to accumulation 
of glycolytic intermediates upstream to PK. Subsequently, it causes 

diversion of these intermediates into anabolic pathways which hasten 
active proliferation of cancer cells as shown in figure 1 [9,41]. In 
contrast, replacement of embryonic and tumor isoform (PKM2) by 
PKM1 in tumor cell lines renders them less glycolytically active and 
diminishes tumor xenograft growth, suggesting that PKM2 might be 
responsible for the Warburg effect [43,44].

On the other hand, PKM2 has been shown to support tumor 
growth via “non-metabolic” attributes [45-47]. For instance, in a study 
done by Luo et al. [45], PKM2 shown to interact with HIF1α within 
the nucleus and as reported by the study this interaction enhances 
transcriptional activity of HIF1α. This in turn leads to enhanced 
expression of target genes, including, GLUT1, PKM2, and LDHA. It 
is therefore, the study revealed a “positive feedback loop” mechanism 
that reprograms the glucose metabolism. Similarly, Yang et al. [46] 
showed that, activation of EGFR resulted in translocation of PKM2 
into nucleus where it is associated with phosphorylated β-catenin to 
form a complex, which enhanced cyclin D1 and c-Myc expression. 
These findings underscore the importance of the integrated metabolic 
and non-metabolic functions of PKM2 in tumorigenesis.

Isocitrate Dehydrogenase (IDH): IDH mutations can be seen 
as a case where a single point mutation (R132) affecting cellular 
metabolism is selected in cancer cells. In fact, IDH1 mutations were 
recognized in gliomas and acute myeloid leukemias (AML) [47,48]. It 
has been known that oxidative decarboxylation of isocitrate by non-
mutant IDH1 generates α-ketoglutarate (α-KG) and NADPH, but not 
the case concerning the mutant IDH1 [49]. In this regard, Dang et 
al. [50] using in human malignant gliomas revealed that, the mutant 
IDH1 reduces α-KG to 2-hydroxyglutarate (2-HG) by consuming 
NADPH rather than generation. In AML, both the cytosolic IDH1 
and the mitochondrial analogue IDH2 are commonly mutated [51]. 
One of the consequences of this change regarding tumorigenesis is 
that, stabilization of the oncogene HIF-1α, since for its degradation 
α-KG is required by PDH2 [26]. Moreover, 2-HG was shown to act as 
a competitive inhibitor of α-KG-dependent demethylases, including 
histone demethylases and the TET family of 5-methylcytosine 
hydroxylases, affecting CpG island hypermethylation. This links the 
oncogenic effect of IDH1 mutations to epigenetic regulation [52,53].

Succinate Dehydrogenase and Fumarate Hydratase: It has 
been known that, Krebs’s cycle enzymes SDH and FH catalyze 
the conversion of succinate to fumarate and fumarate to malate, 
respectively. But, mutant form of these enzymes has been associated 
with carcinogenesis [54]. In this regard, Pollard et al. [55] reported 
frequent germline mutation in FH regarding familial cancer 
syndromes, renal, skin, and uterine cancers. In the same study, 
mutations in these enzymes caused accumulation of their substrate 
and these substrates i.e. fumarate and succinate ones accumulated can 
act as oncogenes when the traverse the inner mitochondrial membrane 
and enter the cytosol by dioxygenases and prolyl hydroxylases, which 
are known to be involved in the degradation of the oncogene HIF-1α 
under normoxic environment [2].

Metabolic Targeting for Cancer Therapy
During the past decade, the metabolic rewiring of cancer cells has 

been viewed as a promising source of novel drug targets (Table 2).

Targeting Glucose Metabolism: As shown in table 2, targeting 
GLUTs, HK-II, PFK-1, glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH), PKM2, and Krebs’s cycle mutant enzymes has been tried 
as part of development of anticancer drugs to modulate glucose 
metabolism in tumors [56-79]. For instance, several compounds, 
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Metabolic enzyme or 
transporter protein

Alteration in 
cancer cells 

Consequence of 
alteration Possible drivers Example cancer types

Compounds 
under 

investigation
References

Glucose transporters
Overexpression 
of GLUT-1, -3, -4 
& -12

Facilitate glucose uptake 
by cancer cells

Over activity of 
MYC,AKT, HIF-1α, 
& LOF mutation 
of p53

Brain, breast, head, neck, 
bladder, renal, colorectal, 
lung, gastric, ovarian, OED, 
OSCC, & laryngeal

Phloretin, 
WZB117, 
Fasentin

[56-60]

Hexokinase

Over expression of 
HK II

Facilitate glucose 
metabolism & also 
functions as a protective 
signaling molecule

Over activity of 
MYC, & AKT

Breast, colon, lung, 
liver, ovarian, cervical, 
pancreatic, glioblastoma, 
& thyroid 2-DG

[61-64]

Under expression 
of HK I

Accelerate tumor growth 
& metastasis 

Over activity of 
MYC, & AKT Cervical [61]

Phosphofructokinase 1 Over expression of 
pfkfb-3

Increased production 
of F2, 6BP, a potent 
allosteric activator of 
PFK-1

Over activity of 
MYC, & AKT

Breast, colon, ovarian, 
thyroid, head, neck & 
squamous cell 

PFK158 [67,68]

Pyruvate kinase Over expression of 
PKM2

Causes accumulation & 
diversion of glycolytic 
intermediates upstream 
to PK into anabolic 
pathways; enhances 
transcriptional activity of 
HIF1α

Over activity of 
HIF, EGFR & LOF 
mutation of p53

Lung, liver, colon, thyroid, 
kidney & bladder

TLN-232/CAP-
232, Lapachol [41-46,69]

Pyruvate 
dehydrogenase kinase

Over expression of 
PDK1-3

Reduce flux of pyruvate 
into mitochondria

Over activity of 
MYC, HIF-1α, & 
LOF mutation of 
p53

glioblastoma, breast, 
melanoma, cervical, colon, 
& ovarian, 

DCA [73-77]

Lactate dehydrogenase Over expression of 
LDH-A

Prevent buildup of 
lactate inside cancer cell

Over activity of 
MYC, HIF-1α, & 
LOF mutation of 
p53

Liver, colon, lung, & 
pancreatic FX11 [34,70,71]

Monocarboxylate 
transporters

Over expression of 
MCT1 & MCT4

Facilitate lactic acid 
effuse from tumor cells

Over activity 
of MYC & LOF 
mutation of p53

Prostate, gastric, lung, 
breast, colon

α-cyano-
4-hydroxy-
cinnamic acid

[70-72]

Glutamine transporter 
proteins

Over expression of 
SLC1A5 & LAT1

Sustain glutamine need 
of cancer cells

Over activity 
of MYC & LOF 
mutation of p53

Breast, colon, 
lung , melanoma, 
neuroblastoma, 
glioblastoma, & prostate 

KM8094, 
BCH, GPNA [83-88]

Glutaminase Over expression of 
GLS1 

Maintain a functioning 
TCA cycle

Over activity of 
MYC, KRAS, Rho 
GTPases & LOF 
mutation of p53 

Colon, breast, lung, cervix, 
brain; human B lymphoma, 
prostate, acute myeloid 
leukemia, myeloma, & 
gliomas

BPTES, CB-
83958, & 
compound 
968

[89-96]

Glutamate 
dehydrogenase

Over expression of 
GLUD

Maintain a functioning 
TCA cycle

Over activity of 
MYC

Gliomas, leukemias, 
breast, lung & colon EGCG, R162 [74,96]

Isocitrate 
Dehydrogenase 

GOF mutation of 
IDH1, & IDH2

Production of 2HG 
from α-KG & resulted in 
stabilization of HIF-1α

- Gliomas & acute myeloid 
leukemias AG-221 [48-51]

Succinate 
Dehydrogenase & 
Fumarate Hydratase

LOF mutations FH, 
SDH B, -C & -D

Increased succinate &/
or fumarate causes 
stabilization of HIF-1α

- Renal, skin, & uterine - [54,55]

Table 2: Altered enzymes and transporter proteins in glucose and glutamine metabolism and possible drivers in various types of cancers.

Glucose transporter (GLUT); fructose-2, 6,-bisphosphate (F2, 6BP); pyruvate kinase (PK); 2-deoxyglucose (2-DG); Dichloroacetate (DCA); Hexokinase 
(HK); Loss of function (LOF); Gain-of-function (GOF); oral epithelial dysplasia (OED); oral squamous cell carcinoma (OSCC); Pyruvate dehydrogenase 
kinase (PDK).
2-hydroxyglutarate (2HG); α ketoglutarate (α-KG); Succinate Dehydrogenase (SDH); Fumarate Hydratase (FH); Isocitrate Dehydrogenase (IDH); Solute 
carrier family A1 member 5 (SLC1A5); L-type amino acid transporter 1 (LAT1); Glutaminase 1 (GLS1); Monocarboxylate transporters (MCT); Lactate 
dehydrogenase (LDH); 2-aminobicyclo-(2, 2,1)-heptane-2-carboxylic acid (BCH); gamma-l-glutamyl-p-nitroanilide (GPNA); bis-2-[5–phenylacetamido-1, 
2, 4-thiadiazol-2-yl] ethyl sulfide (BPTES), Epigallocatechin gallate (EGCG); Glutamate dehydrogenase (GLUD); Loss of function (LOF); Gain-of-function 
(GOF).
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including, phloretin, WZB117 and fasentin has been demonstrated 
antitumor effects in preclinical studies by inhibiting GLUTs. However, 
selectivity of such drugs against tumors is under question because 
they are ubiquitously expressed in mammalian cells [56]. Moreover, 
2-deoxyglucose (2-DG), a glucose analogue has been identified as a 
small molecule that inhibits HK and glycolysis according to in vitro 
and in vivo studies as reviewed by Xi et al. [65]. Furthermore, in 
study done by Zhu et al. [66] 2-DG showed in improved inhibition 
of growth, migration, invasion and cell cycle arrest when combined 
with metformin against ovarian cancer cell lines via p38 MAPK/JNK 
signaling pathway.

On the other hand, mutation in the Krebs’s cycle enzymes IDH, 
FH, and SDH have been identified in different cancer types [78,74]. 
Novel compounds like that target the gain-of-function activity of 
mutant IDH have recently been shown to have success in preclinical 
and clinical settings [78], however, inhibiting mutant FH and SDH 
with small molecules has been unrealistic because these are loss of 
function mutations [74]. Accordingly, AG-221, inhibitor of mutant 
IDH2 has been shown to decrease the production of 2HG and cause 
tumor cells to differentiate towards a more normal phenotype and it is 
early phase clinical trials [79].

Targeting Glutamine Metabolism: The idea of interrupting 
the supply or utilization of the conditionally-essential amino acid 
glutamine in order to fight cancer dates back several decades and 
is based on its high concentration in plasma as well as the selective 
vulnerability of a variety of malignant cells to glutamine depletion 
[80,81]. In this regard, studies has been investigating several small 

molecules which inhibits glutamine transporter proteins and 
glutaminase enzyme that play a great role in cancer cell glutamine 
metabolism as shown in table 2 [82-94].

For instance, it has been recognized that, solute carrier family A1 
member 5 (SLC1A5) and L-type amino acid transporter 1 (LAT1) 
which are involved glutamine transport in the cell shown to be up-
regulated in malignancies [82,83]. To inhibit glutamine uptake by 
tumor cells different compounds have been tested in vitro and in vivo 
[84]. In a study done by Hassanein et al. [85] aimed at evaluating 
SLC1A5 as a potential target and candidate biomarker predictive of 
survival and response to therapy, targeting was examined in a panel of 
NSCLC and human bronchial cell lines by RNA interference and by a 
small molecular inhibitor, gamma-l-glutamyl-p-nitroanilide (GPNA). 
In the study, inactivation of SLC1A5 genetically or pharmacologically 
has been shown to decrease glutamine consumption, inhibit cell 
growth, and also induce autophagy and apoptosis in a subgroup of 
NSCLC cell lines that over express SLC1A5. Moreover in the same 
study targeting SLC1A5 has been shown to decrease tumor growth 
in NSCLC xenografts. Similarly, in a recent study reported by Kasai 
et al. [86] has been the anti-tumor efficacy of a novel anti-SLC1A5 
humanized monoclonal antibody, KM8094 against gastric cancer by 
inhibiting glutamine uptake. On the other hand, a study done by Imai 
et al. [87] using inhibitor of LAT1, 2-aminobicyclo-(2, 2,1)-heptane-
2-carboxylic acid (BCH), demonstrated reduction in viability of 
on-small cell lung cancer cell lines as well as, co-administration of 
gefitinib with BCH reduced the viability of the cells more than either 
agent alone. The authors reported that inhibition of LAT1 reduced the 
level of phosphorylation of mTOR, p70S6K and 4EBP1.

 
Figure 1: Signaling networks and their regulation of metabolism in cancer cells.
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Moreover, it is known that GLS is required to generate glutamate 
from glutamine during glutamine metabolism is GLS [1]. GLS has 
been inhibited using small molecule inhibitors such as bis-2-[5–
phenylacetamido-1, 2, 4-thiadiazol-2-yl] ethyl sulfide (BPTES), CB-
83958 and compound 968 [88-90]. In these studies inhibition has been 
shown to significantly suppress tumor growth in several experimental 
models including breast cancer and lymphoma. Moreover, a recent 
study done by Song et al. [91] demonstrated that, loss of GLS1 
expression by RNAi shown to decrease proliferation and survival 
of colorectal cancer (CRC) cells due to decrease in ATP levels and 
increases ROS level.

However, in a study done by Cheng et al. [89] silencing of GLS 
inhibits cell proliferation but fails to eliminate glioblastoma cells 
in both in vitro and in vivo models. The same study found out that 
induction of a compensatory anaplerotic mechanism mediated 
by pyruvate carboxylase (PC), allows the tumors to use glucose-
derived pyruvate instead of glutamine for anaplerosis. Furthermore, 
Phannasil et al. [92] reported that expression of PC in cancerous areas 
of breast tissue at higher levels than in the non-cancerous areas by 
examining the expression of PC using Immunohistochemistry of 
paraffin-embedded breast tissue sections of fifty seven breast cancer 
patients with different stages of cancer progression. In this regard, 
dual targeting of both GLS and PC could produce synergistic activity 
in arresting growth of tumors having glutamine addiction.

Current Challenges and Future Perspectives
Realizing the intricate nature of metabolic links and how different 

tumors adjust these processes to satisfy their metabolic demands will be 
one of the most important challenges in exploiting cancer metabolism 
target for cancer therapy. In this regard, explicit knowledge regarding 
most feasible targets and there control and cross-talk at different levels 
of regulation will transform the efforts of current studies in to fruit i.e. 
producing a successful anticancer agent targeting cancer metabolism. 
The other issue that could be a challenge and should be addressed 
in the future is selectivity, because highly proliferating cells like T 
lymphocyte cells have similarity in metabolic profiles like cancer cells, 
it is therefore, understanding the critical difference between cancer and 
highly proliferating normal cells will have paramount importance in 
avoiding toxicity. On the other hand, combining metabolic inhibitors 
with the currently available drugs which have been associated with cell 
death via oxidative stress, might leads to synergistic effect by arresting 
pro-survival mechanisms via generation of ATP as well as reducing 
powers like NADPH via PPP.
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