胃疾病和治疗 -  SCI FOOSCHEN德赢娱乐国际

全文

病例报告
嗜酸性食管炎是糖敏感性疾病吗?

德里克·莱昂莱*

助理Emeritus,克利夫兰诊所基金会,俄亥俄州克利夫兰

*通讯作者:Derrick Lonsdale,emeritus,克利夫兰诊所基金会,克利夫兰,俄亥俄州,美国,电子邮件:Derricklonsdale@hotmail.com


摘要

嗜酸性食管炎是一种炎症性疾病,可引起吞咽困难、食物嵌塞和胸痛。通过食管活检,每个高倍视野至少有15个嗜酸性粒细胞是诊断所必需的。在过去二十年中,嗜酸性粒细胞炎已成为胃肠道发病的一个日益重要的原因。一名14岁男孩被诊断为其他地方8岁时发生嗜酸性食管炎。在进行内窥镜检查之前,他的病史多年来一直被认为是心身疾病。唯一其他阳性实验室研究是嗜酸性粒细胞增多症。尽管常规治疗没有改善总体症状,但食管炎持续存在,体重也没有增加体格检查显示许多自主神经功能障碍的迹象,红细胞转酮酶试验显示硫胺素内稳态异常。治疗开始于静脉注射包括盐酸硫胺素(THCL)在内的水溶性维生素.由于转酮酶试验变得更糟,THCL被硫胺素四氢呋喃二硫化物(TTFD)取代,转酮酶和症状反应随之改善。有酗酒家族史,且患者对糖上瘾,这表明硫胺素内稳态异常存在遗传风险。脚气病在早期阶段可导致自主神经功能障碍。现在已知炎症通过迷走神经反射性抑制e、 自身依赖于乙酰胆碱。嗜酸性食管炎中已报告食管运动异常。THCL未能提高转酮酶活性表明硫胺素转运体的遗传缺陷及其随后的TTFD纠正不需要硫胺素转运系统。

关键词

嗜酸性;食管炎;炎;Thiamin Hoosostasis.

介绍

嗜酸性食管炎(EOE)是迄今为止最常见的嗜酸性胃肠道疾病。由于T辅助型2(TH2)炎症,它是一种明确的慢性特应性疾病,通常通过食品过敏原触发。它往往对治疗令人难以置信,并且没有常见的长期治疗[1]。它代表了最新的食物过敏形式,通过避免违规食物的控制越来越多地出现为实现和维持缓解的治疗替代品[2]。在一个超过700,000名居民的城镇,一项研究表明,10年内急流迅速增加[3]。eoe据报道介质复合亚基12(med12)突变[4]。793例eoe患者,72%是男性[5]。173例食管食品烟草障碍患者,27%是EOE [6]。食道的脊髓和迷走病似乎有助于痛苦的感觉[7],其生理学在其运动中很重要[8]。食道依赖于乙酰胆碱的神经功能功能,并且在EOE中已经证明了食管电机障碍[9]。

病例报告

一个14岁的男孩在8岁时被诊断为嗜酸性食管炎。他的病史始于婴儿期,复发性耳部感染和哮喘。他的许多症状(表1),最初被认为是心身的,混淆了诊断,直到内镜检查。除了嗜酸性粒细胞增多和食管病理持续性外,许多实验室研究一直是阴性的。常规治疗对症状没有影响。他的体重和身材都没有增加。体格检查发现腹部轻触有严重的痛觉过敏。心脏听诊提示二尖瓣脱垂。髌骨深肌腱反射无反应,即使在詹德拉纪操作。轻拍大腿内侧和腿部导致一个非常缓慢的外观短暂的白色皮肤描记。 Laboratory studies are shown in (Table 2). He was treated first with a course of intravenous infusions of watersoluble vitamins that included thiamine hydrochloride (THCl) (Table 3). Because of increasing abnormality of erythrocyte transketolase, thiamine tetrahydrofurfuryl disulfide (TTFD) was substituted for THCL with consequent improvement in transketolase and symptomology. Body weight at the beginning of treatment was 105 pounds, placing him in the 25th百分位数。经过一年的治疗后,他的体重增加到122磅,把他放在50年里th百分位数。他的身材在64.5英寸到68.5英寸的同一时间内增加,从50岁提高th75年th百分位数。

这个男孩在写这篇文章的时候18岁。腹痛是可变的,并与可见的腹部肌肉收缩有关。头痛、恶心、关节疼痛和疲劳似乎与食物摄入有关。夜间腹痛,需要排尿。

讨论
硫胺素体内平衡

硫胺缺乏(TD)可导致能量代谢受损和大脑易损性[10]。直到最近,有关硫胺摄取、激活和活性辅因子与靶酶结合的遗传缺陷才被描述。SLC19A3硫胺素转运体的遗传变异可能对酒精依赖综合征[12]的遗传易感有一定的贡献,可能在该患者的家族史中具有重要意义。TD引起脑线粒体[13]氧化应激。在一名萎缩性脚气患者中,硫胺转运体[14]的SLC家族中有37个突变。大鼠TD降低了含有功能性内皮[15]的主动脉中乙酰胆碱介导的舒张和苯肾上腺素介导的血管收缩。TD诱导hif1介导的基因表达与缺氧胁迫[16]中观察到的类似。在小鼠中删除该因子可导致痛觉过敏加剧,提示其在疼痛调节[17]中的二重性,并可能与患者表达的痛觉过敏/异位痛觉有关。危重患者的败血症可能与TD有关,实验性TD导致小鼠[18]氧化应激和炎症反应改变。人体组织中总硫胺素含量低于其他动物。 The high sensitivity of humans to thiamine deficiency may be linked to this [19].

表1:一名14岁男孩患有嗜酸性食道炎的症状

表2:实验室结果来自一个嗜酸性嗜食管炎的男孩

表3:静脉滴注水溶性维生素给一个患有嗜酸性食管炎的男孩

梅奥诊所指出,测定硫胺素缺乏的最好方法是测定血液中硫胺素的含量。就像镁一样,这可能会误导人,因为重要的是它的细胞内含量。在加入硫胺素焦磷酸(TPPE)之前和之后,测定硫胺素依赖酶的功能和红细胞转酮醇酶活性明显表明硫胺素缺乏。在给予硫胺[20]后,TKA在正常范围内随着TPPE的减少而增加。

空热量

彼得斯是第一个认识到硫胺素和葡萄糖之间关系的人。缺乏硫胺素的鸽子的神经系统病理学与beriberi和Peters的相似。比较了TD鸽子脑细胞和硫胺素充足的鸽子脑细胞的呼吸。在向制剂中添加葡萄糖之前,没有发生任何差异,当明显发现在硫胺素充足的细胞中立即开始产生二氧化碳,而在TD细胞中则没有。Peters称之为catatorulin效应[21],因此强调摄入过多的简单碳水化合物,即高热量营养不良,会自动增加对这种维生素的需求[22]。焦磷酸硫胺是过氧化物酶体中2-羟基酰基辅酶a裂解酶(HACL1)的辅助因子,使α氧化依赖硫胺进行脂肪代谢[23-25]。

炎症

起源于迷走神经调节T细胞的动作电位,其又产生乙酰胆碱,需要控制先天性免疫应答[26]。胆碱能神经元需要衍生自丙酮酸脱氢酶的乙酰基 - COA,以合成乙酰胆碱[27],对食道功能至关重要[7]。假设TD导致乙酰胆碱的缺乏缺乏炎症的缩小抑制的失效以及影响该患者的食管运动。

神经异常

自主神经异常不会产生独特的症状。这是一组症状,综合起来,表明存在一种自主神经异常状态。家族性自主神经异常(FD)于1949年被描述,但Riley和Moore后来继续注意到其他自主神经异常综合征[28,29]。鉴于大脑对葡萄糖的严重依赖,它能够通过神经内分泌轴来控制葡萄糖的代谢。因此,我们对疾病的理解应该扩展到在病理生理过程[30]的概念中考虑神经输入。该病人表现出许多临床现象,表明自主神经功能障碍。1979年[31]时,检查发现二尖瓣脱垂(MVP)的收缩期中期发出明确的声响,并伴有自主神经异常。94例患者被鉴定为MVP,其中59例红细胞[32]中红细胞镁浓度低。硫胺和镁作为硫胺依赖酶的辅助因子共同作用。吸入二氧化碳会引起一种情绪,类似于自发性恐慌发作[33],这是该患者病史中记录的症状之一。 Since hypoxia results in sympathetic overdrive in animal studies [34] and TD causes oxidative imbalance described as pseudo-hypoxia, it is hypothesized that panic attacks are fragmented fight-or-flight reflexes, initiated by TD in this patient. His history of ADD/OCD, that had caused some diagnostic confusion before the diagnosis of EoE showed some clinical improvement as a result of his vitamin treatment. Oxidative stress has been reported in ADD/ADHD) [35]. In his early history, this patient had recurrent otitis media, a frequent disorder attributed to oxidative stress [36]. He also had experienced recurrent asthma, a disease that occurred in the history of a child with intermittent cerebellar ataxia due to thiamin dependency [37]. Of 1,180 patients with EoE, 160 (14%) were suspected of having aeroallergen-associated triggers by history and 32 (20%) had biopsy confirmation of this. Most of them were boys (84%). All had a history or examination consistent with allergic rhinitis and 75% had a history of asthma [38]. Several pathogenic mechanisms related to the nervous system have been reported in non allergic rhinitis, including dysautonomia [39]. Riley noted that failure of general body growth in Familial Dysautonomia appears to be a regular feature despite normal growth hormone [29]. Perhaps the delay in growth would not have been noticed in this patient if he had not had a phenomenal growth acceleration of 4 inches in height and a weight increase of 17 pounds in one year of treatment. The higher percentiles for both showed that this was an unusual acceleration of growth. It is unknown whether the mechanism for growth failure in FD is directly related to the genetic cause of the disease or because of the resulting dysautonomia. Since the dysautonomia in this patient appears to have been acquired in relationship to thiamine metabolism, it suggests that growth failure was related to the dysautonomia.

硫胺素衍生物的作用

如果TD是该患者的主要生化损伤,其临床效应始于婴儿期,则需要解释红细胞转酮醇酶对盐酸硫胺的不良反应。其机制尚不清楚,但临床和实验室对硫胺四氢糠酰二硫化(TTFD)的反应表明,基因决定的硫胺转运体问题。TTFD是硫胺的一种开环形式,在细胞膜上非酶性还原。噻唑环闭合,一种完整形式的硫胺被引入细胞[40]。TD的早期症状是由自主神经异常引起的,常被诊断为心身疾病,在这个阶段很容易逆转。据推测,如果这些症状没有被识别出来,生化损害由于TD的纠正失败而继续,[41]可能会出现不可预测的并发症。遗传风险的作用正在扩大:例如,硫胺素焦磷酸缺乏或依赖可导致丙酮脱氢酶[41]、支链氨基酸[42]的脱氢酶或硫胺素焦磷酸激酶[43]的缺陷,尽管临床效果不同。所有这些由基因决定的病症都可以用药理学剂量的硫胺素治疗。因此,酚类疾病的典型表达远不如发现生化病变重要。由于这种类型的遗传缺陷,可能有许多人需要更多的硫胺,通常不是由饮食提供。 Thiamine precursor drugs can achieve these high blood levels and result in increased concentrations in the central nervous system [44,45]. An experiment in DBA/J2 mice suggested also that TTFD had a cholinergic effect [46]. An S-alkyl derivative of thiamine (benfotiamine) has had a beneficial effect on peripheral nerve function and inflammatory markers in type I diabetes [47] and significantly decreased pro-inflammatory mediators in liposaccharide-stimulated murine BV-2 microglia [48]. It has been shown, however, that this derivative is practically insoluble in water, organic solvents or oil, making it unsuitable for intravenous use. When solubilized in hydroxypropyl-beta-cyclodextrxin and given to mice, thiamine levels rapidly increased in blood and liver but there was no significant increase observed in the brain. These investigators proposed that benfotiamine only penetrates the cells after dephosphorylation by intestinal alkaline phosphatases, entering the bloodstream as S-benzoylthiamine that is converted to thiamine in erythrocytes and in the liver. This derivative should therefore be differentiated from true lipid-soluble thiamine disulfide derivatives and used appropriately [49]. It has been shown that TTFD inhibits the arachidonic acid cascade-line activation that would make it potentially more suitable for brain inflammation [50]. Thiamine pyrophosphate prevented cisplatin-associated oxidative stress, whereas thiamine did not prevent this [51]. TTFD rapidly increased thiamine activity in whole blood, erythrocytes, CSF and urine in normal and thiamine-deficient subjects. Such repletion was equal to that produced by parenteral, water-soluble thiamine hydrochloride or thiamine pyrophosphate [52], suggesting that this derivative might be useful in the correction of TD in the peroxisome where thiamine pyrophosphate is the cofactor required [23]. It is very unlikely that thiamine deficiency or abnormal homeostasis is the ultimate biochemical lesion in causing EoE. For example vitamin D deficiency has been associated with increased risk for severe asthma, challenge proven food allergy, severe atopic dermatitis and EoE [53]. It is hypothesized therefore that the biochemical lesion, whether it be genetically determined, nutritional in origin, or a combination of the two, represents the etiology for EoE that might be applicable to the etiology of other diseases.

结论

已经提出了一种患有eoe的单一患者的硫胺素代谢异常,作为潜在的最终病因。已经假设乙酰胆碱缺乏,由低效柠檬酸循环功能引起的,干扰食道的动力,并且未能抑制食品过敏原引起的炎症反应。由于迷走神经提供了肠道,它可能解释嗜酸性肠炎和食管炎的发病率。通过测量红细胞转铁蛋白酶(TKA)的活性和通过添加硫胺素焦磷酸酯(TPPE),可以通过测量红细胞转铁蛋白酶(TKA)的活性和对该酶的影响来区分TD相关EOE的发生率。

参考文献
  1. Cianferoni A, Spergel JM(2015)嗜酸性食管炎和胃肠炎。过敏哮喘代表15:558。[参考。]
  2. Lucendo AJ(2015)基于meta分析的嗜酸性食管炎饮食管理指南。Curr Gastroenterol Rep: 464。[参考。]
  3. Giriens B,Yan P,Safroneva E,Zwahlen M,Reinhard A等人。(2015)瑞士州沃州州州嗜酸嗜酸嗜酸性食管炎发病率,1993年至2013年:基于人口的研究。过敏70:1633-1639。[参考。]
  4. Langley KG, Brown J, Gerber RJ, Fox J, Friez MJ, et al.(2015)除了Ohdo综合征:一个家族错义突变拓宽了MED12谱。Am J Genet A 167: 3180-3185。[参考。]
  5. MoAwad FJ,Dellon Es,Achem SR,Ljuldjuraj T,Green DJ等。(2015)种族和性别对嗜酸性食管炎特征的影响。Clin Gastro Hepatol 14:23-30。[参考。]
  6. Sengupta N,Tapper EB,Corban C,Sommers T,Leffler da,等。(2015)2004 - 2014年患有食管食品推注急诊部门的173名患者的病因和并发症的临床预测因子。艾美药剂42:91-98。[参考。]
  7. Neuhuber WL, Raab M, Berthoud HR, world J(2006)哺乳动物食管神经支配。《胚胎细胞生物学》185:1-73。[参考。]
  8. Goyal Ok,Chauhury A(2008)正常食管运动的生理学。J Clin Gastroenterol 42:610-619。[参考。]
  9. Santander C, Chavarria Herbozo CM, Becerro Gonzalez I, Burgos Santamaria D(2015)嗜酸性食管炎食管运动功能受损Rev Esp Enferm Dig 107。[参考。]
  10. Abdou E, Hazell AS(2015)硫胺缺乏:病理生理机制的更新和未来的治疗考虑。神经化学学报40:353-361。[参考。]
  11. Brown G(2014)硫胺素运输和代谢缺陷。J Inherit Metab Dis 37: 577-585。[参考。]
  12. Quadri G, McQuillin A, Guerrini I, Thomson AD, Cherian R, et al.(2014)来自硫胺转运体2基因溶质载体SLC19A3的酒精依赖综合征遗传易感证据。精神病学专题24:122-123。[参考。]
  13. 沙玛A, Bist R, Bubber P(2013)硫胺缺乏诱导小家鼠脑线粒体氧化应激。生理生化杂志69:539-546。[参考。]
  14. Bravata V, Minafra L, Callari G, Gelfi C, Edoardo Grimaldi LM(2014)散发性脚气病中硫胺素转运体基因的分析。营养30:485 - 488。[参考。]
  15. Gioda CR, Capettini LS, Cruz JS, Lemos VS(2014)在大鼠中,硫胺缺乏导致一氧化氮生成减少和血管功能障碍。心血管疾病24:183-188。[参考。]
  16. 甜蜜的RL,Zastre Ja(2013)HIF1-α-介导的维生素B1缺乏诱导的基因表达。国际J Vitam Nutr Res 83:188-197。[参考。]
  17. Kanngiesser M, Mair N, Lim HY, Zschiebsch K, Blees J, et al.(2014)缺氧诱导因子1调节冷热疼痛敏感性和持续性。抗氧化还原信号20:2555-2571。[参考。]
  18. de Andrade JA,Gayer CR,Nogueira NP,Paes MC,Bastos VL等(2014年)硫胺素缺乏对脓毒症实验模型中炎症、氧化应激和细胞迁移的影响。詹明姆(隆德)11:11。[参考。]
  19. Gangolf M,Czerniecki J,Radermecker M,Detry O,Nisolle M等人。(2010)人类和培养细胞磷酸化硫胺素衍生物的硫胺素和含量。Plos一个5:E13616。[参考。]
  20. Lonsdale D(2007)三种病例报告说明在使用红细胞转铁糖糖酶的临床应用。基于EVID基于补充替补MED 4:247-250。[参考。]
  21. Peters R a(1938)维生素B1的Catatorulin试验。Biochem J 32:2031-2036。[参考。]
  22. Lonsdale D(2006)审查硫胺(E)及其衍生物的生物化学,新陈代谢和临床益处。基于EVID的补充替代医学3:49-59。[参考。]
  23. Casteels M,Sniekers M,Fraccascia P,Mannaerts GP,van Veldhoven PP(2007)在3-甲基支链脂肪酸的过氧化物代谢中,2-羟基乙酰辅酶PP(2007)的作用是3-甲基支链脂肪酸的过氧化物代谢和2-羟基直链脂肪酸。Biochem Soc Trans 35:876-880。[参考。]
  24. (2007)哺乳动物过氧化物酶体中硫胺素焦磷酸盐的存在。BMC Biochem 8:10。[参考。]
  25. (2011)硫胺素焦磷酸盐在低聚化中的作用。Acta botanica sinica(云南植物学报)1814:1226-1233。[参考。]
  26. Rosas-Ballina M, Olofsson PS, Ochani M, Valdés-Ferrer SI, Levine YA, et al.(2011)乙酰胆碱合成T细胞在迷走神经回路中传递神经信号。科学334:98 - 101。[参考。]
  27. Szutowicz A, Bielarczyk H, Jankowska-Kulawy A, Pawelczyk T, Ronowska A(2013)乙酰辅酶A是神经退行性疾病过程中胆碱能神经元存活或死亡的关键因素。神经化学38:1523-1542。[参考。]
  28. 赖利CM, Day RL, Greeley DM,等(1949)中枢自主神经功能障碍伴缺陷性流泪。报告5例。Pediat 3: 468 - 478。[参考。]
  29. Riley CM,Moore Rh(1966)家族性消亡与相关疾病的分化。Pediat 37:435-446。[参考。]
  30. Bisschop PH, Fliers E, Kalsbeek A(2015)肝脏葡萄糖生产的自主调节。Compr Physiol 5: 147-165。[参考。]
  31. Coghlan HC, Phares P, Cowley M, Copley D, James TN(1979)二尖瓣脱垂的自主神经异常。美国医学杂志67:236-244。[参考。]
  32. Coghlan HC,Natello G(1991-1992)症状患者的红细胞镁,初级二尖瓣脱垂:与症状,二十二尖瓣疾病,联合高兴和自主调节的关系。镁痕迹elem 10:205-214。[参考。]
  33. Colasanti A, Esquivel G, Schruers KJ, Griez EJ(2012)关于二氧化碳的精神作用。药典18:5627- 5637。[参考。]
  34. Johnson TS, Young JB, Landsberg L(1983)大鼠急性和慢性缺氧的交感肾上腺反应。J Clin Invest 71: 1263-1272。[参考。]
  35. CEYLAN M,SINER S,Bayraktar C Kavutcu M(2010)儿童和青少年患者的氧化不平衡引起关注缺陷/多动障碍。Prog Neuropsychopharmacol Biol精神病学54:1491-1494。[参考。]
  36. Cemek M, Dede S, Baviroglu F, Caksen H, Cemek F,Yuca K(2005)急性中耳炎和扁桃体炎儿童的氧化剂和抗氧化剂水平:一项比较研究。小儿耳鼻咽喉69:823- 827。[参考。]
  37. Lonsdale D,Faulkner WR,Price JW,Smeby RR(1969)间歇性小脑与高硼酸酸酐,甲肝血症和HyperAlinuria相关的间歇性大脑共济失调。儿科43:1025-1034。[参考。]
  38. Ram G,Lee J,Ott M,Brown-Whitehorn TF,Cianferoni A等。(2015)嗜酸性食管炎和过敏性鼻炎儿童食管嗜酸性粒细胞的季节性加剧。ANN Allergy哮喘免疫紫外线115:224-228。[参考。]
  39. 伯恩斯坦JA,辛格U(2015)非过敏性鼻炎神经异常。Curr Allergy哮喘REP 15:18。[参考。]
  40. Lonsdale D(2004)硫胺四氢糠酰二硫化:一种鲜为人知的治疗药物。医学科学监测10:199-203。[参考。]
  41. Lonsdale D(2015)硫胺素和镁缺乏:疾病键。MED Hypotheses 84:129-134。[参考。]
  42. Fernhoff PM,Lubitz D,Danner DJ,Dembure PP,Schwartz HP等。(1985)枫树糖浆尿脓病毒的硫胺素反应。Pediastr Res 19:1011-1016。[参考。]
  43. Banka S, de Goede C, Yue WW, Morris AA, von Bremen B, et al.(2014)扩大了硫胺素焦磷酸激酶缺乏的临床和分子谱:一种由TPK1突变引起的可治疗的神经系统疾病。Mol Genet Metab 113: 301-306。[参考。]
  44. Hills Ji,Golub Ms,B Etendorff L,敏锐的Cl(2012)硫胺素四氢呋喃二硫化的作用对青少年DBA / 2J小鼠的行为。神经毒素毒素特拉醇34:242-252。[参考。]
  45. Nozaki S, Mizuma H, Tanaka M, Jin G, Tahara T, et al. (2009) Thiamine tetrahydrofurfuryl二硫化能改善大鼠体力疲劳负荷时的能量代谢和体力表现。Nutr Res 29: 867- 872。[参考。]
  46. 四氢呋喃硫胺对DBA/2J小鼠听觉性癫痫发作的影响。Dev Pharmacol Ther 4:28 -36。[参考。]
  47. (2012)长期口服苯硫胺补充剂对I型糖尿病患者周围神经功能和炎症标志物的影响:一项为期24个月的双盲、随机、安慰剂对照试验。糖尿病护理35:1095-1097。[参考。]
  48. Bozic I,Savic D,Laketa D,Bjelobaba I,Milenkovic I等。(2015)BenFotiamine在LPS刺激的BV-2微胶质细胞中衰减炎症反应。PLO一个10:e0118372。[参考。]
  49. Benfotiamine是一种合成的S-酰基硫胺衍生物,与脂溶性硫胺二硫化衍生物相比,具有不同的作用机制和药理特征。BMC Pharmacol 8: 10。[参考。]
  50. Matsui K,Nakahara H,Watanabe H,Tamatsu H,Nakazawa M,等。(1985)硫胺素四氢呋喃二硫化脲(TTFD)的幼稚酸级联活化,如狗的心脏瓣制备所证明的那样。J Pharmacol 39:375-379。[参考。]
  51. Coskun R,Turan Mi,Turan是,Gulapoglu M(2014)硫胺素焦磷酸盐,而不是硫胺素,对大鼠顺铂诱导的心脏毒性的保护作用。药物化学毒剂37:290-294。[参考。]
  52. Baker H, Frank O(1976)与水溶性硫胺比较,大蒜胺的吸收、利用和临床疗效。营养科学维生素醇(东京)增刊:63-68。[参考。]
  53. Slack Ma,Ogbogu Pu,Phillips G,Platts-Mills TA,Erwin EA(2015)血清维生素D水平成人和儿科患者嗜酸性食管炎。ANN Allergy哮喘免疫紫外线115:45-50。[参考。]

在这里下载临时PDF

条信息

Aritcle类型:病例报告

引用:嗜酸性食管炎是糖敏感疾病吗?J胃失调2 (1):doi http://dx.doi.org/10.16966/2381-8689.114

版权:©2016 Lonsdale D.这是在创意公约归因许可证的条款下分发的开放式文章,其允许在任何媒体中不受限制地使用,分发和再现,只要原始作者和来源被记入。

出版历史记录:

  • 收到的日期:2016年1月18日

  • 接受日期:2016年1月21日

  • 发表日期:2016年1月26日